Fixed Points and Best Approximation in Menger Convex Metric Spaces

نویسنده

  • ISMAT BEG
چکیده

Nonexpansive mappings have been studied extensively in recent years by many authors.The first fixed point theorem of a general nature for nonlinear nonexpansive mappings in noncompact setting were proved independently by Browder [8] and Gohde [12]. Later on, Kirk [17] proved the same results under slightly weaker assumptions. A fundamental problem in fixed point theory of nonexpansive mappings is to find conditions under which a set has the fixed point property for these mappings. It is intimately connected with differential equations and with the geometry of the Banach spaces.The interplay between the geometry of Banach spaces and fixed point theory has been very strong and fruitful. In particular, geometrical properties play key role in metric fixed point problems, see, for example, [2–5, 7, 19, 20] and references mentioned therein. These results use mainly convexity hypothesis and geometric properties of Banach spaces. These results were starting point for a new mathematical feild : the application of the geometric theory of Banach spaces to fixed point theory. The problem of proximity of subsets in normed spaces has been studied extensily, see, for example, [13, 15, 19, 20]. Aronszajn and Panitchapakdi [2] and Menger [18] defined the convexity structure on metric spaces through closed ball and studied their properties. Khalil [16] further studied existence of fixed points and best approximation in these convex metric spaces. This paper addresses the convexity structure of a metric space, using geometric

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convexity and Geodesic Metric Spaces

In this paper, we first present a preliminary study on metric segments and geodesics in metric spaces. Then we recall the concept of d-convexity of sets and functions in the sense of Menger and study some properties of d-convex sets and d-convex functions as well as extreme points and faces of d-convex sets in normed spaces. Finally we study the continuity of d-convex functions in geodesic metr...

متن کامل

New best proximity point results in G-metric space

Best approximation results provide an approximate solution to the fixed point equation $Tx=x$, when the non-self mapping $T$ has no fixed point. In particular, a well-known best approximation theorem, due to Fan cite{5}, asserts that if $K$ is a nonempty compact convex subset of a Hausdorff locally convex topological vector space $E$ and $T:Krightarrow E$ is a continuous mapping, then there exi...

متن کامل

Coupled common fixed point theorems for $varphi$-contractions in probabilistic metric spaces and applications

In this paper, we give some new coupled common  fixed point theorems for probabilistic $varphi$-contractions  in Menger probabilistic metric spaces.  As applications of the main results, we obtain some coupled common fixed point theorems in usual metric spaces and fuzzy metric spaces. The main results of this paper improvethe corresponding results given by some authors. Finally, we give one exa...

متن کامل

Common fixed point theorems for occasionally weakly compatible mappings in Menger spaces and applications

In 2008, Al-Thaga and Shahzad [Generalized I-nonexpansive self-maps and invariant approximations, Acta Math. Sinica 24(5) (2008), 867{876]introduced the notion of occasionally weakly compatible mappings (shortly owcmaps) which is more general than all the commutativity concepts. In the presentpaper, we prove common xed point theorems for families of owc maps in Mengerspaces. As applications to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005